Генеративное моделирование – одна из самых обсуждаемых тем в области искусственного интеллекта. Машины можно научить рисовать, писать и сочинять музыку. Вы сами можете посадить искусственный интеллект за парту или мольберт, для этого достаточно познакомиться с самыми актуальными примерами генеративных моделей глубокого обучения: вариационные автокодировщики, генеративно-состязательные сети, модели типа кодер-декодер и многое другое.
Дэвид Фостер делает понятными и доступными архитектуру и методы генеративного моделирования, его советы и подсказки сделают ваши модели более творческими и эффективными в обучении. Вы начнете с основ глубокого обучения на базе Keras, а затем перейдете к самым передовым алгоритмам.
- Разберитесь с тем, как вариационные автокодировщики меняют эмоции на фотографиях. - Создайте сеть GAN с нуля. - Освойте работу с генеративными моделями генерации текста. - Узнайте, как генеративные модели помогают агентам выполнять задачи в рамках обучения с подкреплением. - Изучите BERT, GPT-2, ProGAN, StyleGAN и многое другое.
Название: Генеративное глубокое обучение. Творческий потенциал нейронных сетей Год: 2020 Автор: Дэвид Фостер Издательство: Питер Жанр: программирование, разработка, компьютерная литература Количество страниц: 352 Формат: PDF, DJVU, RTF Язык: Русский Размер: 47.04 Mb
Xemera.At.Ua - информационный портал! Все ссылки на файлы, указанные на сайте взяты из открытых источников интернета и предоставлены пользователями нашего сайта исключительно в ознакомительных целях.
Если вы являетесь правообладателем какого либо материала и не желаете его свободного распространения, или считаете, что какой-либо из материалов нарушает Ваши авторские права - свяжитесь с Администрацией.
Владельцы и создатели данного сайта не несут ответственность за использование и содержание ссылок и информации, представленных на этом сайте.
Сайт оптимизирован для просмотра с разрешением 1024x768, 1280x800, 1280x1024 и 1600x1200 браузером FireFox или Opera