Игры
 Видео
 Музыка
 Графика
 Интересно
 Программы
 Библиотека
 Видеоуроки
 Кулинария
 Разное




ivashka
Добавил новостей Статьи: 9711
Написал комментариев Мысли: 0
zyzy
Добавил новостей Статьи: 9533
Написал комментариев Мысли: 0
didl3
Добавил новостей Статьи: 8428
Написал комментариев Мысли: 0
Kioka83
Добавил новостей Статьи: 5331
Написал комментариев Мысли: 0
trigall
Добавил новостей Статьи: 5017
Написал комментариев Мысли: 0
colt
Добавил новостей Статьи: 4221
Написал комментариев Мысли: 0
NIKIG
Добавил новостей Статьи: 2397
Написал комментариев Мысли: 0
Оцените наш сайт
Всего ответов: 17
Главная » 2020 » Октябрь » 8 » Язык R для аналитики (2020)
19:14
Язык R для аналитики (2020)

Мы живём в эпоху цифровизации, когда каждый процесс можно автоматизировать и упростить свою работу. На языке R можно написать код, который освободит вам время для новых проектов. Научитесь легко собирать данные из различных систем. Прокачайтесь до уровня middle в прогнозировании и визуализации в R-Studio. Автоматизируйте рутинные задачи.

Самая универсальная область применения R — аналитика
Используя R, вы можете провести статистические тесты и проверить гипотезы, построить графики и сделать прогноз.
1. Легко собирайте данные из различных систем с R
2. Прокачайтесь до уровня middle в прогнозировании и визуализации в R-Studio
3. Автоматизируйте свои рутинные задачи после прохождения курса

Возможности после обучения
1. Собирать
Данные из большинства аналитических систем
2. Преобразовывать
R-скрипты для переработки получаемых данных в зависимости от задач
3. Анализировать
Рутинные процессы с помощью скриптов и показывать результаты на графиках

Достижения и ключевые навыки после обучения

Достигнутые результаты:
1. Составлен прогноз продаж в зависимости от погоды
2. Собраны несколько наборов данных в один
3. Проведён анализ продаж интернет-маркетинга
4. Проведён анализ потребительских привычек регионов России
5. Составлен прогноз цены квартиры на основе характеристик

Ключевые навыки:
1. Сбор данных из большинства веб-аналитических систем
2. Преобразование данных с помощью R-скриптов
3. Работа с клиент-серверными, облачными и локальными базами данных на языке R
4. Разработка скриптов для рассылки писем и создания наглядных графиков

Программа обучения:

Модуль 1 - Базовые принципы программирования на R
Рассмотрим базовые возможности языка R, научимся настраивать R-Studio и начнём использовать для простых операций.
1. R и R-Studio
2. Переменные их типы
3. Объявление переменных в R
4. Арифметические операции
5. Логические переменные и операции
6. Ветвление
7. Циклы

Модуль 2 - Отличия R от традиционного программирования
Познакомимся с векторами и техниками программирования в R.
1. Понятие вектора, векторные операции
2. Использование функций
3. Обзор основных функций и пакетов R

Модуль 3 - Работа с наборами данных
Научимся импортировать данные в R, познакомимся с фреймами данных, освоим базовые операции (просмотр, обращение к данным, преобразование, соединение, фильтрация).
1. DataFrame — что это и для чего
2. Импорт DataFrame в R
3. Простейшее исследование DataFrame
4. Доступ к переменным DataFrame (знак $)
5. Базовые операции с DataFrame
6. Фильтрация DataFrame

Модуль 4 - Визуализация в R
Познакомимся со способами визуализации данных в R, научимся применять визуализацию в зависимости от данных, интерпретировать графики. Научимся оценивать распределение, описательные статистики для двух и более переменных, узнаем о корреляции и регрессии.
1. Основы визуализации в R
2. Построение гистограмм — функция hist
3. Построение boxplot
4. Построение графиков зависимостей двух переменных

Модуль 5 - Продвинутая визуализация в R
Познакомимся с продвинутыми способами визуализации данных в R, научимся работать со сложными наборами данных и интерпретировать их.
1. Базовый шаблон ggplot
2. Геометрические типы и преобразования
3. Управление графическими параметрами
4. Группировка данных
5. Системы координат
6. Оси, легенды, подписи
7. Разделение графиков по фасетам
8. Интерактивная визуализация в Shiny

Модуль 6 - Исследовательский анализ данных в R
Научимся подготавливать данные к дальнейшей работе, анализу структуры, классификации без обучения (кластерный анализ).
1. Стандартизация данных
2. Иерархическая кластеризация
3. Метод k-средних (kmeans)
4. Основы мультивариативного анализа в R

Модуль 7 - Основы прогнозирования в R
Узнаем про основные модели прогнозирования, познакомимся с линейной регрессией и научимся её построению, оценке и использованию.
1. Модели прогнозирования
2. Линейная регрессия
3. Построение модели линейной регрессии в R
4. Оценка модели линейной регрессии и её использование

Модуль 8 - Создание и использование моделей в R
Узнаем больше о различных моделях прогнозирования и их использовании в полевых условиях, научимся их строить и валидировать. Познакомимся с работой с предсказанием категории и с несбалансированными данными.
1. Логистическая регрессия
2. Основные модели, основанные на деревьях решений
3. Валидация модели
4. Дилемма смещения-дисперсии
5. Работа с предсказанием категории
6. Работа с несбалансированными данными
7. Имплементация модели в работу компании




Название: Язык R для аналитики
Год выхода: 2020
Автор: Ольга Титова, Андрей Макеев (Нетология)
Жанр: Видеокурс, программирование, разработка, обучение
Формат: MP4
Видео: AVC | 1280x720 | ~585 Kbps
Аудио: AAC | 112 kb/s | 32 KHz
Язык: Русский
Продолжительность: 18:34:17
Размер: 9.04 Gb

Скачать Язык R для аналитики (2020)

Раздел: видеоуроки | Автор: Kioka83 | Просмотров: 104 | Теги: разработка, программирование, обучение, Видеокурс | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Design powered by Xemera™ Copyright © 2009-2024


Гость


Имя: Гость
IP: 3.14.251.103
Ты здесь: -й день
Добавить новость
Читать ЛС ()
Мой профиль
Выход

Онлайн всего: 73
Гостей: 73
Пользователей: 0

   Всего: 176
   Админ: 1
   Модераторы: 0
   Журналисты: 10
   Проверенные: 5
   Пользователи: 160
   Парней: 142
   Девушек: 34
«  Октябрь 2020  »
ПнВтСрЧтПтСбВс
   1234
567891011
12131415161718
19202122232425
262728293031
Бесплатный хостинг uCoz
Xemera.At.Ua - информационный портал! Все ссылки на файлы, указанные на сайте взяты из открытых источников интернета и предоставлены пользователями нашего сайта исключительно в ознакомительных целях.
Если вы являетесь правообладателем какого либо материала и не желаете его свободного распространения, или считаете, что какой-либо из материалов нарушает Ваши авторские права - свяжитесь с Администрацией.
Владельцы и создатели данного сайта не несут ответственность за использование и содержание ссылок и информации, представленных на этом сайте.
Сайт оптимизирован для просмотра с разрешением 1024x768, 1280x800, 1280x1024 и 1600x1200 браузером FireFox или Opera