Технологии анализа текстовой информации стремительно меняются под влиянием машинного обучения. Нейронные сети из теоретических научных исследований перешли в реальную жизнь, и анализ текста активно интегрируется в программные решения. Нейронные сети способны решать самые сложные задачи обработки естественного языка, никого не удивляет машинный перевод, «беседа» с роботом в интернет-магазине, перефразирование, ответы на вопросы и поддержание диалога.
Почему же Сири, Алекса и Алиса не хотят нас понимать, Google находит не то, что мы ищем, а машинные переводчики веселят нас примерами «трудностей перевода» с китайского на албанский? Ответ кроется в мелочах – в алгоритмах, которые правильно работают в теории, но сложно реализуются на практике. Научитесь применять методы машинного обучения для анализа текста в реальных задачах, используя возможности и библиотеки Python. От поиска модели и предварительной обработки данных вы перейдете к приемам классификации и кластеризации текстов, затем приступите к визуальной интерпретации, анализу графов, а после знакомства с приемами масштабирования научитесь использовать глубокое обучение для анализа текста.
Название: Прикладной анализ текстовых данных на Python Год: 2019 Автор: Бенджамин Бенгфорт, Ребекка Билбро, Тони Охеда Издательство: Питер Жанр: программирование, разработка, компьютерная литература Количество страниц: 368 Формат: PDF, DJVU, RTF Язык: Русский Размер: 282.29 Mb
Скачать Прикладной анализ текстовых данных на Python
Xemera.At.Ua - информационный портал! Все ссылки на файлы, указанные на сайте взяты из открытых источников интернета и предоставлены пользователями нашего сайта исключительно в ознакомительных целях.
Если вы являетесь правообладателем какого либо материала и не желаете его свободного распространения, или считаете, что какой-либо из материалов нарушает Ваши авторские права - свяжитесь с Администрацией.
Владельцы и создатели данного сайта не несут ответственность за использование и содержание ссылок и информации, представленных на этом сайте.
Сайт оптимизирован для просмотра с разрешением 1024x768, 1280x800, 1280x1024 и 1600x1200 браузером FireFox или Opera